1D Poisson's Equation
This example is taken from [4]. Consider a simple 1D Poisson’s equation with Dirichlet boundary conditions. The solution is given by
\[u(x)=\sin (2 \pi x)+0.1 \sin (50 \pi x)\]
using ModelingToolkit, IntervalSets, Sophon
using Optimization, OptimizationOptimJL, Zygote
using CairoMakie
@parameters x
@variables u(..)
Dₓ² = Differential(x)^2
f(x) = -4 * π^2 * sin(2 * π * x) - 250 * π^2 * sin(50 * π * x)
eq = Dₓ²(u(x)) ~ f(x)
domain = [x ∈ 0 .. 1]
bcs = [u(0) ~ 0, u(1) ~ 0]
@named poisson = PDESystem(eq, bcs, domain, [x], [u(x)])
\[ \begin{align} \frac{\mathrm{d}}{\mathrm{d}x} \frac{\mathrm{d} u\left( x \right)}{\mathrm{d}x} =& - 39.478 \sin\left( 6.2832 x \right) - 2467.4 \sin\left( 157.08 x \right) \end{align} \]
chain = Siren(1, 16, 32, 16, 1)
pinn = PINN(chain)
sampler = QuasiRandomSampler(200, 1)
strategy = NonAdaptiveTraining(1 , 50)
prob = Sophon.discretize(poisson, pinn, sampler, strategy)
@showprogress res = Optimization.solve(prob, BFGS(); maxiters=2000)
phi = pinn.phi
xs = 0:0.001:1
u_true = @. sin(2 * pi * xs) + 0.1 * sin(50 * pi * xs)
us = phi(xs', res.u)
fig = Figure()
axis = Axis(fig[1, 1])
lines!(xs, u_true; label="Ground Truth")
lines!(xs, vec(us); label="Prediction")
axislegend(axis)
fig
0.0%┣ ┫ 1/2.0k [00:21<Inf:Inf, InfGs/it]
3.361035e+06 0.1%┣ ┫ 2/2.0k [00:21<11:35:38, 21s/it]
3.138804e+06 0.1%┣ ┫ 3/2.0k [00:21<05:49:12, 10s/it]
2.936345e+06 0.2%┣ ┫ 4/2.0k [00:21<03:53:34, 7s/it]
2.746533e+06 0.2%┣ ┫ 5/2.0k [00:21<02:55:55, 5s/it]
2.498818e+06 0.3%┣ ┫ 6/2.0k [00:21<02:21:07, 4s/it]
2.418663e+06 0.3%┣ ┫ 7/2.0k [00:21<01:57:57, 4s/it]
2.174433e+06 0.4%┣▏ ┫ 8/2.0k [00:21<01:41:25, 3s/it]
2.086895e+06 0.4%┣▏ ┫ 9/2.0k [00:21<01:29:01, 3s/it]
2.003093e+06 0.5%┣▏ ┫ 10/2.0k [00:22<01:19:22, 2s/it]
1.837683e+06 0.5%┣▏ ┫ 11/2.0k [00:22<01:11:39, 2s/it]
1.725814e+06 0.6%┣▏ ┫ 12/2.0k [00:22<01:05:20, 2s/it]
1.594955e+06 0.6%┣▏ ┫ 13/2.0k [00:22<01:00:04, 2s/it]
1.506776e+06 0.7%┣▎ ┫ 14/2.0k [00:22<55:37, 2s/it]
1.428959e+06 0.7%┣▎ ┫ 15/2.0k [00:22<51:46, 2s/it]
1.395728e+06 0.8%┣▎ ┫ 16/2.0k [00:22<48:29, 1s/it]
1.261727e+06 0.8%┣▎ ┫ 17/2.0k [00:22<45:35, 1s/it]
1.151208e+06 0.9%┣▎ ┫ 18/2.0k [00:22<43:03, 1s/it]
1.054997e+06 0.9%┣▎ ┫ 19/2.0k [00:22<40:47, 1s/it]
9.799980e+05 1.0%┣▎ ┫ 20/2.0k [00:22<38:44, 1s/it]
9.186868e+05 1.0%┣▍ ┫ 21/2.0k [00:22<36:53, 1s/it]
8.594771e+05 1.1%┣▍ ┫ 22/2.0k [00:22<35:14, 1s/it]
7.847681e+05 1.1%┣▍ ┫ 23/2.0k [00:22<33:43, 1s/it]
7.135436e+05 1.2%┣▍ ┫ 24/2.0k [00:23<32:20, 1it/s]
6.629802e+05 1.2%┣▍ ┫ 25/2.0k [00:23<31:04, 1it/s]
6.133305e+05 1.3%┣▍ ┫ 26/2.0k [00:23<29:54, 1it/s]
5.253909e+05 1.3%┣▍ ┫ 27/2.0k [00:23<28:50, 1it/s]
4.587066e+05 1.4%┣▌ ┫ 28/2.0k [00:23<27:50, 1it/s]
4.183185e+05 1.4%┣▌ ┫ 29/2.0k [00:23<26:54, 1it/s]
3.725324e+05 1.5%┣▌ ┫ 30/2.0k [00:23<26:02, 1it/s]
3.293172e+05 1.5%┣▌ ┫ 31/2.0k [00:23<25:14, 1it/s]
2.785027e+05 1.6%┣▌ ┫ 32/2.0k [00:23<24:28, 1it/s]
2.461240e+05 1.6%┣▌ ┫ 33/2.0k [00:23<23:45, 1it/s]
2.151734e+05 1.7%┣▌ ┫ 34/2.0k [00:23<23:05, 1it/s]
1.881705e+05 1.7%┣▋ ┫ 35/2.0k [00:23<22:27, 1it/s]
1.745354e+05 1.8%┣▋ ┫ 36/2.0k [00:23<21:51, 1it/s]
1.535701e+05 1.8%┣▋ ┫ 37/2.0k [00:23<21:17, 2it/s]
1.354806e+05 1.9%┣▋ ┫ 38/2.0k [00:23<20:46, 2it/s]
1.175053e+05 1.9%┣▋ ┫ 39/2.0k [00:24<20:15, 2it/s]
1.015979e+05 2.0%┣▋ ┫ 40/2.0k [00:24<19:46, 2it/s]
8.599934e+04 2.1%┣▊ ┫ 42/2.0k [00:24<18:52, 2it/s]
7.724386e+04 2.1%┣▊ ┫ 43/2.0k [00:24<18:28, 2it/s]
6.863331e+04 2.2%┣▊ ┫ 44/2.0k [00:24<18:04, 2it/s]
6.204778e+04 2.2%┣▊ ┫ 45/2.0k [00:24<17:42, 2it/s]
5.437739e+04 2.3%┣▊ ┫ 46/2.0k [00:24<17:20, 2it/s]
4.776322e+04 2.3%┣▊ ┫ 47/2.0k [00:24<17:00, 2it/s]
3.978627e+04 2.4%┣▊ ┫ 48/2.0k [00:24<16:40, 2it/s]
3.550662e+04 2.4%┣▉ ┫ 49/2.0k [00:24<16:21, 2it/s]
3.150346e+04 2.5%┣▉ ┫ 50/2.0k [00:24<16:03, 2it/s]
2.866548e+04 2.5%┣▉ ┫ 51/2.0k [00:24<15:45, 2it/s]
2.490911e+04 2.6%┣▉ ┫ 52/2.0k [00:24<15:28, 2it/s]
2.169057e+04 2.7%┣▉ ┫ 54/2.0k [00:24<14:56, 2it/s]
2.020877e+04 2.7%┣▉ ┫ 55/2.0k [00:24<14:41, 2it/s]
1.644496e+04 2.8%┣█ ┫ 57/2.0k [00:25<14:13, 2it/s]
1.483103e+04 2.9%┣█ ┫ 58/2.0k [00:25<13:59, 2it/s]
1.231654e+04 3.0%┣█ ┫ 60/2.0k [00:25<13:33, 2it/s]
1.137067e+04 3.0%┣█ ┫ 61/2.0k [00:25<13:21, 2it/s]
1.024622e+04 3.1%┣█ ┫ 63/2.0k [00:25<12:57, 2it/s]
9.558414e+03 3.2%┣█ ┫ 64/2.0k [00:25<12:47, 3it/s]
9.003443e+03 3.2%┣█ ┫ 65/2.0k [00:25<12:36, 3it/s]
8.466924e+03 3.3%┣█ ┫ 66/2.0k [00:25<12:26, 3it/s]
7.568788e+03 3.4%┣█ ┫ 68/2.0k [00:25<12:06, 3it/s]
7.122071e+03 3.4%┣█ ┫ 69/2.0k [00:25<11:56, 3it/s]
6.654754e+03 3.5%┣█▏ ┫ 70/2.0k [00:25<11:47, 3it/s]
6.069318e+03 3.6%┣█▏ ┫ 72/2.0k [00:25<11:29, 3it/s]
5.778862e+03 3.6%┣█▏ ┫ 73/2.0k [00:25<11:20, 3it/s]
5.404989e+03 3.7%┣█▏ ┫ 75/2.0k [00:26<11:04, 3it/s]
5.170634e+03 3.8%┣█▏ ┫ 76/2.0k [00:26<10:56, 3it/s]
4.673924e+03 3.9%┣█▎ ┫ 78/2.0k [00:26<10:41, 3it/s]
4.480053e+03 3.9%┣█▎ ┫ 79/2.0k [00:26<10:34, 3it/s]
3.951870e+03 4.0%┣█▎ ┫ 81/2.0k [00:26<10:19, 3it/s]
3.765812e+03 4.1%┣█▎ ┫ 82/2.0k [00:26<10:13, 3it/s]
3.416696e+03 4.2%┣█▍ ┫ 84/2.0k [00:26<10:00, 3it/s]
3.120784e+03 4.3%┣█▍ ┫ 86/2.0k [00:26<09:47, 3it/s]
2.809535e+03 4.4%┣█▍ ┫ 88/2.0k [00:26<09:35, 3it/s]
2.683482e+03 4.4%┣█▍ ┫ 89/2.0k [00:26<09:29, 3it/s]
2.473241e+03 4.5%┣█▌ ┫ 91/2.0k [00:26<09:18, 3it/s]
2.374546e+03 4.6%┣█▌ ┫ 92/2.0k [00:26<09:13, 3it/s]
2.142016e+03 4.7%┣█▌ ┫ 94/2.0k [00:26<09:02, 4it/s]
2.006079e+03 4.7%┣█▌ ┫ 95/2.0k [00:26<08:57, 4it/s]
1.821847e+03 4.8%┣█▌ ┫ 97/2.0k [00:27<08:47, 4it/s]
1.701341e+03 4.9%┣█▋ ┫ 98/2.0k [00:27<08:42, 4it/s]
1.528352e+03 5.0%┣█▌ ┫ 100/2.0k [00:27<08:33, 4it/s]
1.359087e+03 5.1%┣█▋ ┫ 102/2.0k [00:27<08:24, 4it/s]
1.235943e+03 5.2%┣█▋ ┫ 104/2.0k [00:27<08:15, 4it/s]
1.128931e+03 5.3%┣█▋ ┫ 106/2.0k [00:27<08:07, 4it/s]
1.072569e+03 5.4%┣█▊ ┫ 108/2.0k [00:27<07:59, 4it/s]
9.949104e+02 5.5%┣█▊ ┫ 110/2.0k [00:27<07:51, 4it/s]
9.083905e+02 5.6%┣█▊ ┫ 112/2.0k [00:27<07:43, 4it/s]
8.929421e+02 5.6%┣█▊ ┫ 113/2.0k [00:27<07:40, 4it/s]
8.040490e+02 5.7%┣█▉ ┫ 115/2.0k [00:27<07:33, 4it/s]
6.976264e+02 5.8%┣█▉ ┫ 117/2.0k [00:27<07:26, 4it/s]
6.398589e+02 5.9%┣█▉ ┫ 119/2.0k [00:28<07:20, 4it/s]
5.896099e+02 6.0%┣█▉ ┫ 121/2.0k [00:28<07:13, 4it/s]
5.404443e+02 6.1%┣██ ┫ 123/2.0k [00:28<07:07, 4it/s]
5.053425e+02 6.2%┣██ ┫ 125/2.0k [00:28<07:01, 4it/s]
4.786528e+02 6.3%┣██ ┫ 127/2.0k [00:28<06:55, 5it/s]
4.383359e+02 6.4%┣██ ┫ 129/2.0k [00:28<06:49, 5it/s]
4.105574e+02 6.5%┣██ ┫ 131/2.0k [00:28<06:43, 5it/s]
3.961703e+02 6.6%┣██ ┫ 133/2.0k [00:28<06:38, 5it/s]
3.710749e+02 6.7%┣██ ┫ 135/2.0k [00:28<06:33, 5it/s]
3.499688e+02 6.8%┣██▏ ┫ 137/2.0k [00:28<06:28, 5it/s]
3.325095e+02 6.9%┣██▏ ┫ 139/2.0k [00:28<06:23, 5it/s]
3.108784e+02 7.0%┣██▏ ┫ 141/2.0k [00:28<06:18, 5it/s]
2.934548e+02 7.1%┣██▏ ┫ 143/2.0k [00:29<06:13, 5it/s]
2.776374e+02 7.2%┣██▎ ┫ 145/2.0k [00:29<06:09, 5it/s]
2.622309e+02 7.3%┣██▎ ┫ 147/2.0k [00:29<06:04, 5it/s]
2.487076e+02 7.4%┣██▎ ┫ 149/2.0k [00:29<06:00, 5it/s]
2.387465e+02 7.5%┣██▍ ┫ 151/2.0k [00:29<05:56, 5it/s]
2.241332e+02 7.6%┣██▍ ┫ 153/2.0k [00:29<05:52, 5it/s]
2.124680e+02 7.7%┣██▍ ┫ 155/2.0k [00:29<05:48, 5it/s]
2.014159e+02 7.8%┣██▍ ┫ 157/2.0k [00:29<05:44, 5it/s]
1.934539e+02 7.9%┣██▌ ┫ 159/2.0k [00:29<05:40, 5it/s]
1.861463e+02 8.0%┣██▌ ┫ 161/2.0k [00:29<05:36, 5it/s]
1.719826e+02 8.1%┣██▌ ┫ 163/2.0k [00:29<05:33, 6it/s]
1.566413e+02 8.2%┣██▋ ┫ 165/2.0k [00:29<05:29, 6it/s]
1.428959e+02 8.3%┣██▋ ┫ 167/2.0k [00:29<05:26, 6it/s]
1.327089e+02 8.4%┣██▋ ┫ 169/2.0k [00:30<05:22, 6it/s]
1.232086e+02 8.5%┣██▋ ┫ 171/2.0k [00:30<05:19, 6it/s]
1.168314e+02 8.6%┣██▊ ┫ 173/2.0k [00:30<05:16, 6it/s]
1.101600e+02 8.7%┣██▊ ┫ 175/2.0k [00:30<05:13, 6it/s]
1.029260e+02 8.8%┣██▊ ┫ 177/2.0k [00:30<05:10, 6it/s]
9.825970e+01 8.9%┣██▊ ┫ 179/2.0k [00:30<05:07, 6it/s]
9.337614e+01 9.0%┣██▉ ┫ 181/2.0k [00:30<05:04, 6it/s]
8.912062e+01 9.1%┣██▉ ┫ 183/2.0k [00:30<05:01, 6it/s]
8.691417e+01 9.2%┣██▉ ┫ 184/2.0k [00:30<05:00, 6it/s]
8.257284e+01 9.3%┣██▉ ┫ 186/2.0k [00:30<04:57, 6it/s]
7.895578e+01 9.4%┣███ ┫ 188/2.0k [00:30<04:54, 6it/s]
7.623040e+01 9.5%┣███ ┫ 190/2.0k [00:30<04:51, 6it/s]
7.369373e+01 9.6%┣███ ┫ 192/2.0k [00:30<04:48, 6it/s]
7.054209e+01 9.7%┣███ ┫ 194/2.0k [00:31<04:46, 6it/s]
6.627009e+01 9.8%┣███ ┫ 196/2.0k [00:31<04:43, 6it/s]
6.243543e+01 9.9%┣███ ┫ 198/2.0k [00:31<04:41, 6it/s]
6.028407e+01 10.0%┣███ ┫ 200/2.0k [00:31<04:38, 6it/s]
5.717013e+01 10.1%┣███ ┫ 202/2.0k [00:31<04:36, 7it/s]
5.499663e+01 10.2%┣███ ┫ 204/2.0k [00:31<04:33, 7it/s]
5.141644e+01 10.3%┣███ ┫ 206/2.0k [00:31<04:31, 7it/s]
4.820222e+01 10.4%┣███▏ ┫ 208/2.0k [00:31<04:28, 7it/s]
4.523670e+01 10.5%┣███▏ ┫ 210/2.0k [00:31<04:26, 7it/s]
4.247453e+01 10.6%┣███▏ ┫ 212/2.0k [00:31<04:24, 7it/s]
4.115697e+01 10.7%┣███▏ ┫ 214/2.0k [00:31<04:22, 7it/s]
4.010532e+01 10.7%┣███▎ ┫ 215/2.0k [00:31<04:21, 7it/s]
3.823284e+01 10.8%┣███▎ ┫ 217/2.0k [00:31<04:19, 7it/s]
3.646204e+01 10.9%┣███▎ ┫ 219/2.0k [00:31<04:16, 7it/s]
3.492555e+01 11.0%┣███▎ ┫ 221/2.0k [00:31<04:14, 7it/s]
3.306780e+01 11.1%┣███▍ ┫ 223/2.0k [00:31<04:12, 7it/s]
3.148473e+01 11.2%┣███▍ ┫ 225/2.0k [00:32<04:10, 7it/s]
2.962740e+01 11.3%┣███▍ ┫ 227/2.0k [00:32<04:08, 7it/s]
2.832336e+01 11.4%┣███▍ ┫ 229/2.0k [00:32<04:06, 7it/s]
2.715151e+01 11.5%┣███▌ ┫ 231/2.0k [00:32<04:04, 7it/s]
2.595968e+01 11.6%┣███▌ ┫ 233/2.0k [00:32<04:02, 7it/s]
2.484184e+01 11.7%┣███▌ ┫ 235/2.0k [00:32<04:00, 7it/s]
2.339770e+01 11.8%┣███▌ ┫ 237/2.0k [00:32<03:59, 7it/s]
2.212565e+01 11.9%┣███▋ ┫ 239/2.0k [00:32<03:57, 7it/s]
2.079478e+01 12.0%┣███▋ ┫ 241/2.0k [00:32<03:55, 7it/s]
1.920566e+01 12.1%┣███▋ ┫ 243/2.0k [00:32<03:53, 8it/s]
1.806982e+01 12.2%┣███▊ ┫ 245/2.0k [00:32<03:52, 8it/s]
1.733176e+01 12.3%┣███▊ ┫ 247/2.0k [00:32<03:50, 8it/s]
1.694735e+01 12.4%┣███▊ ┫ 249/2.0k [00:32<03:48, 8it/s]
1.624677e+01 12.6%┣███▉ ┫ 252/2.0k [00:32<03:46, 8it/s]
1.589197e+01 12.7%┣███▉ ┫ 254/2.0k [00:32<03:44, 8it/s]
1.531516e+01 12.8%┣███▉ ┫ 256/2.0k [00:32<03:42, 8it/s]
1.469307e+01 12.9%┣███▉ ┫ 258/2.0k [00:33<03:41, 8it/s]
1.419198e+01 13.0%┣████ ┫ 260/2.0k [00:33<03:39, 8it/s]
1.383422e+01 13.1%┣████ ┫ 262/2.0k [00:33<03:38, 8it/s]
1.318446e+01 13.2%┣████ ┫ 265/2.0k [00:33<03:35, 8it/s]
1.252488e+01 13.3%┣████ ┫ 267/2.0k [00:33<03:34, 8it/s]
1.180323e+01 13.4%┣████ ┫ 269/2.0k [00:33<03:32, 8it/s]
1.151242e+01 13.5%┣████ ┫ 271/2.0k [00:33<03:31, 8it/s]
1.100062e+01 13.7%┣████ ┫ 274/2.0k [00:33<03:29, 8it/s]
1.044908e+01 13.8%┣████▏ ┫ 277/2.0k [00:33<03:26, 8it/s]
9.911811e+00 14.0%┣████▏ ┫ 280/2.0k [00:33<03:24, 8it/s]
9.631239e+00 14.1%┣████▎ ┫ 282/2.0k [00:33<03:23, 8it/s]
9.141736e+00 14.2%┣████▎ ┫ 284/2.0k [00:33<03:22, 9it/s]
8.847923e+00 14.3%┣████▎ ┫ 286/2.0k [00:33<03:20, 9it/s]
8.508156e+00 14.4%┣████▎ ┫ 288/2.0k [00:33<03:19, 9it/s]
8.149254e+00 14.5%┣████▍ ┫ 291/2.0k [00:33<03:17, 9it/s]
7.732038e+00 14.7%┣████▍ ┫ 294/2.0k [00:34<03:15, 9it/s]
7.327885e+00 14.8%┣████▌ ┫ 297/2.0k [00:34<03:13, 9it/s]
7.080965e+00 14.9%┣████▌ ┫ 299/2.0k [00:34<03:12, 9it/s]
6.880273e+00 15.1%┣████▌ ┫ 302/2.0k [00:34<03:10, 9it/s]
6.562074e+00 15.2%┣████▋ ┫ 305/2.0k [00:34<03:08, 9it/s]
6.326203e+00 15.3%┣████▋ ┫ 307/2.0k [00:34<03:07, 9it/s]
6.147323e+00 15.4%┣████▋ ┫ 309/2.0k [00:34<03:06, 9it/s]
5.905303e+00 15.5%┣████▋ ┫ 311/2.0k [00:34<03:05, 9it/s]
5.704061e+00 15.6%┣████▊ ┫ 313/2.0k [00:34<03:04, 9it/s]
5.511433e+00 15.8%┣████▊ ┫ 316/2.0k [00:34<03:02, 9it/s]
5.211680e+00 15.9%┣████▉ ┫ 319/2.0k [00:34<03:00, 9it/s]
5.039414e+00 16.0%┣████▉ ┫ 321/2.0k [00:34<02:59, 9it/s]
4.893347e+00 16.1%┣████▉ ┫ 323/2.0k [00:34<02:58, 9it/s]
4.658551e+00 16.2%┣████▉ ┫ 325/2.0k [00:34<02:57, 9it/s]
4.466378e+00 16.3%┣█████ ┫ 327/2.0k [00:34<02:56, 9it/s]
4.295274e+00 16.4%┣████▊ ┫ 329/2.0k [00:34<02:55, 10it/s]
4.106732e+00 16.5%┣████▉ ┫ 331/2.0k [00:34<02:54, 10it/s]
3.924522e+00 16.6%┣████▉ ┫ 333/2.0k [00:35<02:53, 10it/s]
3.775251e+00 16.8%┣████▉ ┫ 336/2.0k [00:35<02:52, 10it/s]
3.606540e+00 16.9%┣█████ ┫ 339/2.0k [00:35<02:50, 10it/s]
3.392920e+00 17.1%┣█████ ┫ 342/2.0k [00:35<02:49, 10it/s]
3.218358e+00 17.2%┣█████ ┫ 344/2.0k [00:35<02:48, 10it/s]
3.011699e+00 17.3%┣█████ ┫ 347/2.0k [00:35<02:47, 10it/s]
2.882405e+00 17.4%┣█████ ┫ 349/2.0k [00:35<02:46, 10it/s]
2.751453e+00 17.6%┣█████ ┫ 352/2.0k [00:35<02:44, 10it/s]
2.598173e+00 17.7%┣█████▏ ┫ 355/2.0k [00:35<02:43, 10it/s]
2.491975e+00 17.9%┣█████▏ ┫ 358/2.0k [00:35<02:41, 10it/s]
2.423040e+00 18.0%┣█████▎ ┫ 361/2.0k [00:35<02:40, 10it/s]
2.316084e+00 18.2%┣█████▎ ┫ 364/2.0k [00:35<02:39, 10it/s]
2.253518e+00 18.3%┣█████▎ ┫ 367/2.0k [00:35<02:37, 10it/s]
2.132702e+00 18.5%┣█████▍ ┫ 370/2.0k [00:35<02:36, 10it/s]
2.098205e+00 18.6%┣█████▍ ┫ 372/2.0k [00:35<02:35, 10it/s]
2.016457e+00 18.7%┣█████▍ ┫ 374/2.0k [00:35<02:35, 11it/s]
1.909722e+00 18.8%┣█████▌ ┫ 377/2.0k [00:35<02:33, 11it/s]
1.840017e+00 19.0%┣█████▌ ┫ 380/2.0k [00:36<02:32, 11it/s]
1.741884e+00 19.1%┣█████▌ ┫ 383/2.0k [00:36<02:31, 11it/s]
1.668925e+00 19.3%┣█████▋ ┫ 386/2.0k [00:36<02:30, 11it/s]
1.579074e+00 19.5%┣█████▋ ┫ 390/2.0k [00:36<02:28, 11it/s]
1.533397e+00 19.7%┣█████▊ ┫ 394/2.0k [00:36<02:26, 11it/s]
1.493016e+00 19.8%┣█████▊ ┫ 397/2.0k [00:36<02:25, 11it/s]
1.423839e+00 20.0%┣█████▉ ┫ 400/2.0k [00:36<02:24, 11it/s]
1.365434e+00 20.2%┣█████▉ ┫ 404/2.0k [00:36<02:23, 11it/s]
1.314369e+00 20.4%┣██████ ┫ 408/2.0k [00:36<02:21, 11it/s]
1.240803e+00 20.6%┣██████ ┫ 412/2.0k [00:36<02:20, 11it/s]
1.189151e+00 20.8%┣██████ ┫ 416/2.0k [00:36<02:18, 11it/s]
1.113061e+00 21.0%┣██████ ┫ 420/2.0k [00:36<02:17, 12it/s]
1.053547e+00 21.2%┣██████▏ ┫ 424/2.0k [00:36<02:15, 12it/s]
1.010637e+00 21.4%┣██████▏ ┫ 428/2.0k [00:36<02:14, 12it/s]
9.576647e-01 21.6%┣██████▎ ┫ 432/2.0k [00:36<02:13, 12it/s]
9.253599e-01 21.7%┣██████▎ ┫ 435/2.0k [00:36<02:12, 12it/s]
8.715844e-01 21.9%┣██████▍ ┫ 439/2.0k [00:37<02:10, 12it/s]
8.397791e-01 22.1%┣██████▍ ┫ 442/2.0k [00:37<02:09, 12it/s]
7.920761e-01 22.3%┣██████▌ ┫ 446/2.0k [00:37<02:08, 12it/s]
7.513430e-01 22.5%┣██████▌ ┫ 450/2.0k [00:37<02:07, 12it/s]
7.220085e-01 22.7%┣██████▋ ┫ 454/2.0k [00:37<02:06, 12it/s]
6.958726e-01 22.9%┣██████▋ ┫ 458/2.0k [00:37<02:04, 12it/s]
6.720028e-01 23.0%┣██████▊ ┫ 461/2.0k [00:37<02:03, 12it/s]
6.381235e-01 23.2%┣██████▊ ┫ 465/2.0k [00:37<02:02, 13it/s]
6.036347e-01 23.4%┣██████▉ ┫ 469/2.0k [00:37<02:01, 13it/s]
5.724475e-01 23.7%┣██████▉ ┫ 474/2.0k [00:37<02:00, 13it/s]
5.397111e-01 23.9%┣███████ ┫ 478/2.0k [00:37<01:58, 13it/s]
5.136491e-01 24.0%┣███████ ┫ 481/2.0k [00:37<01:58, 13it/s]
4.860014e-01 24.2%┣███████ ┫ 485/2.0k [00:37<01:56, 13it/s]
4.545378e-01 24.5%┣███████ ┫ 490/2.0k [00:37<01:55, 13it/s]
4.205046e-01 24.7%┣███████▏ ┫ 495/2.0k [00:37<01:54, 13it/s]
3.968927e-01 25.0%┣███████▎ ┫ 500/2.0k [00:37<01:52, 13it/s]
3.671130e-01 25.2%┣███████▎ ┫ 505/2.0k [00:37<01:51, 13it/s]
3.475728e-01 25.5%┣███████▍ ┫ 510/2.0k [00:37<01:50, 14it/s]
3.363682e-01 25.7%┣███████▌ ┫ 514/2.0k [00:38<01:49, 14it/s]
3.133610e-01 26.0%┣███████▌ ┫ 521/2.0k [00:38<01:47, 14it/s]
2.938496e-01 26.3%┣███████▋ ┫ 527/2.0k [00:38<01:45, 14it/s]
2.708746e-01 26.7%┣███████▊ ┫ 534/2.0k [00:38<01:44, 14it/s]
2.548574e-01 27.0%┣███████▉ ┫ 540/2.0k [00:38<01:42, 14it/s]
2.332770e-01 27.3%┣████████ ┫ 547/2.0k [00:38<01:41, 14it/s]
2.160889e-01 27.7%┣████████ ┫ 554/2.0k [00:38<01:39, 15it/s]
2.020683e-01 28.0%┣████████▏ ┫ 561/2.0k [00:38<01:37, 15it/s]
1.886128e-01 28.3%┣████████▏ ┫ 566/2.0k [00:38<01:36, 15it/s]
1.764560e-01 28.6%┣████████▎ ┫ 572/2.0k [00:38<01:35, 15it/s]
1.662606e-01 28.9%┣████████▍ ┫ 579/2.0k [00:38<01:34, 15it/s]
1.576643e-01 29.2%┣████████▌ ┫ 585/2.0k [00:38<01:32, 15it/s]
1.471874e-01 29.6%┣████████▋ ┫ 592/2.0k [00:38<01:31, 15it/s]
1.393796e-01 29.8%┣████████▋ ┫ 597/2.0k [00:38<01:30, 16it/s]
1.316882e-01 30.2%┣████████▊ ┫ 604/2.0k [00:38<01:29, 16it/s]
1.251579e-01 30.5%┣████████▉ ┫ 610/2.0k [00:38<01:28, 16it/s]
1.189427e-01 30.8%┣█████████ ┫ 617/2.0k [00:38<01:26, 16it/s]
1.138790e-01 31.1%┣█████████ ┫ 623/2.0k [00:38<01:25, 16it/s]
1.085439e-01 31.4%┣█████████▏ ┫ 629/2.0k [00:39<01:24, 16it/s]
1.045252e-01 31.7%┣█████████▏ ┫ 634/2.0k [00:39<01:23, 16it/s]
1.008306e-01 31.9%┣█████████▎ ┫ 639/2.0k [00:39<01:22, 17it/s]
9.557441e-02 32.3%┣█████████▍ ┫ 646/2.0k [00:39<01:21, 17it/s]
9.084674e-02 32.6%┣█████████▌ ┫ 652/2.0k [00:39<01:20, 17it/s]
8.742913e-02 32.9%┣█████████▌ ┫ 659/2.0k [00:39<01:19, 17it/s]
8.437044e-02 33.2%┣█████████▋ ┫ 665/2.0k [00:39<01:18, 17it/s]
8.158730e-02 33.6%┣█████████▊ ┫ 672/2.0k [00:39<01:17, 17it/s]
7.872095e-02 33.9%┣█████████▉ ┫ 678/2.0k [00:39<01:16, 17it/s]
7.593384e-02 34.2%┣██████████ ┫ 684/2.0k [00:39<01:15, 18it/s]
7.224328e-02 34.5%┣██████████ ┫ 691/2.0k [00:39<01:14, 18it/s]
6.922237e-02 34.8%┣██████████ ┫ 697/2.0k [00:39<01:13, 18it/s]
6.572631e-02 35.2%┣██████████▏ ┫ 704/2.0k [00:39<01:12, 18it/s]
6.271510e-02 35.4%┣██████████▎ ┫ 709/2.0k [00:39<01:12, 18it/s]
5.996806e-02 35.8%┣██████████▍ ┫ 716/2.0k [00:39<01:11, 18it/s]
5.747715e-02 36.1%┣██████████▌ ┫ 722/2.0k [00:39<01:10, 18it/s]
5.469955e-02 36.4%┣██████████▋ ┫ 729/2.0k [00:39<01:09, 18it/s]
5.274737e-02 36.7%┣██████████▋ ┫ 735/2.0k [00:39<01:08, 19it/s]
4.976969e-02 37.1%┣██████████▊ ┫ 742/2.0k [00:40<01:07, 19it/s]
4.825294e-02 37.3%┣██████████▉ ┫ 746/2.0k [00:40<01:07, 19it/s]
4.666385e-02 37.5%┣██████████▉ ┫ 750/2.0k [00:40<01:06, 19it/s]
4.323473e-02 37.8%┣███████████ ┫ 757/2.0k [00:40<01:05, 19it/s]
4.118709e-02 38.1%┣███████████ ┫ 763/2.0k [00:40<01:05, 19it/s]
3.913471e-02 38.5%┣███████████▏ ┫ 770/2.0k [00:40<01:04, 19it/s]
3.771372e-02 38.8%┣███████████▎ ┫ 776/2.0k [00:40<01:03, 19it/s]
3.614718e-02 39.1%┣███████████▍ ┫ 782/2.0k [00:40<01:02, 20it/s]
3.483615e-02 39.4%┣███████████▍ ┫ 789/2.0k [00:40<01:01, 20it/s]
3.342246e-02 39.7%┣███████████▌ ┫ 795/2.0k [00:40<01:01, 20it/s]
3.188417e-02 40.1%┣███████████▋ ┫ 802/2.0k [00:40<01:00, 20it/s]
3.068625e-02 40.4%┣███████████▊ ┫ 808/2.0k [00:40<00:59, 20it/s]
2.962489e-02 40.7%┣███████████▉ ┫ 815/2.0k [00:40<00:59, 20it/s]
2.891265e-02 41.0%┣███████████▉ ┫ 820/2.0k [00:40<00:58, 20it/s]
2.780920e-02 41.3%┣████████████ ┫ 827/2.0k [00:40<00:57, 21it/s]
2.669846e-02 41.6%┣████████████ ┫ 833/2.0k [00:40<00:57, 21it/s]
2.551502e-02 42.0%┣████████████▏ ┫ 840/2.0k [00:40<00:56, 21it/s]
2.465953e-02 42.3%┣████████████▎ ┫ 846/2.0k [00:40<00:55, 21it/s]
2.389399e-02 42.6%┣████████████▍ ┫ 852/2.0k [00:41<00:55, 21it/s]
2.278472e-02 42.9%┣████████████▌ ┫ 859/2.0k [00:41<00:54, 21it/s]
2.222572e-02 43.1%┣████████████▌ ┫ 863/2.0k [00:41<00:54, 21it/s]
2.154399e-02 43.4%┣████████████▋ ┫ 868/2.0k [00:41<00:53, 21it/s]
2.087552e-02 43.7%┣████████████▊ ┫ 874/2.0k [00:41<00:53, 21it/s]
2.021094e-02 44.0%┣████████████▊ ┫ 880/2.0k [00:41<00:52, 22it/s]
1.943899e-02 44.3%┣████████████▉ ┫ 887/2.0k [00:41<00:51, 22it/s]
1.873895e-02 44.6%┣█████████████ ┫ 893/2.0k [00:41<00:51, 22it/s]
1.822522e-02 45.0%┣█████████████ ┫ 900/2.0k [00:41<00:50, 22it/s]
1.782435e-02 45.2%┣█████████████▏ ┫ 905/2.0k [00:41<00:50, 22it/s]
1.718496e-02 45.6%┣█████████████▎ ┫ 913/2.0k [00:41<00:49, 22it/s]
1.681103e-02 46.0%┣█████████████▍ ┫ 921/2.0k [00:41<00:48, 22it/s]
1.637343e-02 46.4%┣█████████████▌ ┫ 928/2.0k [00:41<00:48, 23it/s]
1.609474e-02 46.8%┣█████████████▋ ┫ 936/2.0k [00:41<00:47, 23it/s]
1.566383e-02 47.1%┣█████████████▊ ┫ 943/2.0k [00:41<00:46, 23it/s]
1.534344e-02 47.4%┣█████████████▊ ┫ 949/2.0k [00:41<00:46, 23it/s]
1.478802e-02 47.8%┣█████████████▉ ┫ 956/2.0k [00:41<00:45, 23it/s]
1.415692e-02 48.2%┣██████████████ ┫ 964/2.0k [00:41<00:45, 23it/s]
1.369302e-02 48.6%┣██████████████ ┫ 972/2.0k [00:41<00:44, 23it/s]
1.298991e-02 48.9%┣██████████████▏ ┫ 979/2.0k [00:42<00:43, 24it/s]
1.258477e-02 49.3%┣██████████████▎ ┫ 987/2.0k [00:42<00:43, 24it/s]
1.222162e-02 49.7%┣██████████████▍ ┫ 995/2.0k [00:42<00:42, 24it/s]
1.201196e-02 49.9%┣██████████████▌ ┫ 999/2.0k [00:42<00:42, 24it/s]
1.152559e-02 50.3%┣██████████████ ┫ 1.0k/2.0k [00:42<00:41, 24it/s]
1.119706e-02 50.6%┣██████████████▏ ┫ 1.0k/2.0k [00:42<00:41, 24it/s]
1.063366e-02 51.0%┣██████████████▎ ┫ 1.0k/2.0k [00:42<00:40, 24it/s]
1.020151e-02 51.3%┣██████████████▍ ┫ 1.0k/2.0k [00:42<00:40, 24it/s]
9.710973e-03 51.8%┣██████████████▌ ┫ 1.0k/2.0k [00:42<00:39, 25it/s]
9.251182e-03 52.1%┣██████████████▋ ┫ 1.0k/2.0k [00:42<00:39, 25it/s]
8.860535e-03 52.6%┣██████████████▊ ┫ 1.1k/2.0k [00:42<00:38, 25it/s]
8.598339e-03 53.0%┣██████████████▉ ┫ 1.1k/2.0k [00:42<00:37, 25it/s]
8.248366e-03 53.4%┣███████████████ ┫ 1.1k/2.0k [00:42<00:37, 25it/s]
7.912532e-03 53.9%┣███████████████ ┫ 1.1k/2.0k [00:42<00:36, 26it/s]
7.653951e-03 54.3%┣███████████████▏ ┫ 1.1k/2.0k [00:42<00:36, 26it/s]
7.493505e-03 54.7%┣███████████████▎ ┫ 1.1k/2.0k [00:42<00:35, 26it/s]
7.339985e-03 55.2%┣███████████████▌ ┫ 1.1k/2.0k [00:42<00:34, 26it/s]
7.186479e-03 55.6%┣███████████████▋ ┫ 1.1k/2.0k [00:42<00:34, 26it/s]
7.056097e-03 56.0%┣███████████████▊ ┫ 1.1k/2.0k [00:42<00:33, 26it/s]
6.979389e-03 56.4%┣███████████████▉ ┫ 1.1k/2.0k [00:43<00:33, 26it/s]
6.801028e-03 56.8%┣████████████████ ┫ 1.1k/2.0k [00:43<00:32, 27it/s]
6.659632e-03 57.3%┣████████████████ ┫ 1.1k/2.0k [00:43<00:32, 27it/s]
6.573109e-03 57.5%┣████████████████ ┫ 1.2k/2.0k [00:43<00:32, 27it/s]
6.396974e-03 57.9%┣████████████████▏ ┫ 1.2k/2.0k [00:43<00:31, 27it/s]
6.238316e-03 58.2%┣████████████████▎ ┫ 1.2k/2.0k [00:43<00:31, 27it/s]
5.963824e-03 58.7%┣████████████████▍ ┫ 1.2k/2.0k [00:43<00:30, 27it/s]
5.647570e-03 59.0%┣████████████████▌ ┫ 1.2k/2.0k [00:43<00:30, 27it/s]
5.292592e-03 59.5%┣████████████████▋ ┫ 1.2k/2.0k [00:43<00:29, 28it/s]
4.935298e-03 59.8%┣████████████████▊ ┫ 1.2k/2.0k [00:43<00:29, 28it/s]
4.639532e-03 60.2%┣████████████████▉ ┫ 1.2k/2.0k [00:43<00:28, 28it/s]
4.434512e-03 60.6%┣█████████████████ ┫ 1.2k/2.0k [00:43<00:28, 28it/s]
4.241863e-03 61.0%┣█████████████████ ┫ 1.2k/2.0k [00:43<00:28, 28it/s]
4.050319e-03 61.4%┣█████████████████▏ ┫ 1.2k/2.0k [00:43<00:27, 28it/s]
3.911861e-03 61.8%┣█████████████████▎ ┫ 1.2k/2.0k [00:43<00:27, 29it/s]
3.714134e-03 62.2%┣█████████████████▍ ┫ 1.2k/2.0k [00:43<00:26, 29it/s]
3.527503e-03 62.6%┣█████████████████▌ ┫ 1.3k/2.0k [00:43<00:26, 29it/s]
3.363822e-03 63.0%┣█████████████████▋ ┫ 1.3k/2.0k [00:43<00:26, 29it/s]
3.227033e-03 63.4%┣█████████████████▊ ┫ 1.3k/2.0k [00:44<00:25, 29it/s]
3.139186e-03 63.9%┣█████████████████▉ ┫ 1.3k/2.0k [00:44<00:25, 29it/s]
3.059819e-03 64.3%┣██████████████████ ┫ 1.3k/2.0k [00:44<00:24, 29it/s]
2.962845e-03 64.8%┣██████████████████▏ ┫ 1.3k/2.0k [00:44<00:24, 30it/s]
2.896853e-03 65.1%┣██████████████████▎ ┫ 1.3k/2.0k [00:44<00:23, 30it/s]
2.849110e-03 65.5%┣██████████████████▎ ┫ 1.3k/2.0k [00:44<00:23, 30it/s]
2.807694e-03 65.8%┣██████████████████▍ ┫ 1.3k/2.0k [00:44<00:23, 30it/s]
2.694183e-03 66.3%┣██████████████████▋ ┫ 1.3k/2.0k [00:44<00:22, 30it/s]
2.584948e-03 66.7%┣██████████████████▊ ┫ 1.3k/2.0k [00:44<00:22, 30it/s]
2.486044e-03 67.2%┣██████████████████▉ ┫ 1.3k/2.0k [00:44<00:22, 31it/s]
2.391868e-03 67.5%┣███████████████████ ┫ 1.4k/2.0k [00:44<00:21, 31it/s]
2.285475e-03 68.0%┣███████████████████ ┫ 1.4k/2.0k [00:44<00:21, 31it/s]
2.169383e-03 68.4%┣███████████████████▏ ┫ 1.4k/2.0k [00:44<00:20, 31it/s]
2.065262e-03 68.9%┣███████████████████▎ ┫ 1.4k/2.0k [00:44<00:20, 31it/s]
1.976537e-03 69.2%┣███████████████████▍ ┫ 1.4k/2.0k [00:44<00:20, 31it/s]
1.877483e-03 69.6%┣███████████████████▌ ┫ 1.4k/2.0k [00:44<00:19, 31it/s]
1.781967e-03 70.0%┣███████████████████▋ ┫ 1.4k/2.0k [00:44<00:19, 32it/s]
1.706436e-03 70.4%┣███████████████████▊ ┫ 1.4k/2.0k [00:44<00:19, 32it/s]
1.614389e-03 70.9%┣███████████████████▉ ┫ 1.4k/2.0k [00:44<00:18, 32it/s]
1.560269e-03 71.3%┣████████████████████ ┫ 1.4k/2.0k [00:45<00:18, 32it/s]
1.520343e-03 71.8%┣████████████████████ ┫ 1.4k/2.0k [00:45<00:18, 32it/s]
1.494245e-03 72.2%┣████████████████████▏ ┫ 1.4k/2.0k [00:45<00:17, 32it/s]
1.442266e-03 72.6%┣████████████████████▎ ┫ 1.5k/2.0k [00:45<00:17, 32it/s]
1.409813e-03 72.9%┣████████████████████▍ ┫ 1.5k/2.0k [00:45<00:17, 33it/s]
1.384513e-03 73.3%┣████████████████████▌ ┫ 1.5k/2.0k [00:45<00:16, 33it/s]
1.370442e-03 73.6%┣████████████████████▋ ┫ 1.5k/2.0k [00:45<00:16, 33it/s]
1.340131e-03 74.1%┣████████████████████▊ ┫ 1.5k/2.0k [00:45<00:16, 33it/s]
1.309218e-03 74.5%┣████████████████████▉ ┫ 1.5k/2.0k [00:45<00:15, 33it/s]
1.246795e-03 74.9%┣█████████████████████ ┫ 1.5k/2.0k [00:45<00:15, 33it/s]
1.192281e-03 75.4%┣█████████████████████▏ ┫ 1.5k/2.0k [00:45<00:15, 33it/s]
1.150465e-03 75.9%┣█████████████████████▎ ┫ 1.5k/2.0k [00:45<00:14, 34it/s]
1.108601e-03 76.2%┣█████████████████████▍ ┫ 1.5k/2.0k [00:45<00:14, 34it/s]
1.071789e-03 76.7%┣█████████████████████▌ ┫ 1.5k/2.0k [00:45<00:14, 34it/s]
1.035688e-03 77.2%┣█████████████████████▋ ┫ 1.5k/2.0k [00:45<00:13, 34it/s]
9.977512e-04 77.6%┣█████████████████████▊ ┫ 1.6k/2.0k [00:45<00:13, 34it/s]
9.806695e-04 78.0%┣█████████████████████▉ ┫ 1.6k/2.0k [00:45<00:13, 34it/s]
9.493924e-04 78.4%┣██████████████████████ ┫ 1.6k/2.0k [00:45<00:13, 34it/s]
9.357554e-04 78.9%┣██████████████████████ ┫ 1.6k/2.0k [00:46<00:12, 35it/s]
9.185199e-04 79.4%┣██████████████████████▏ ┫ 1.6k/2.0k [00:46<00:12, 35it/s]
9.052021e-04 79.7%┣██████████████████████▎ ┫ 1.6k/2.0k [00:46<00:12, 35it/s]
8.785946e-04 80.1%┣██████████████████████▍ ┫ 1.6k/2.0k [00:46<00:11, 35it/s]
8.608629e-04 80.5%┣██████████████████████▌ ┫ 1.6k/2.0k [00:46<00:11, 35it/s]
8.502895e-04 80.8%┣██████████████████████▋ ┫ 1.6k/2.0k [00:46<00:11, 35it/s]
8.271231e-04 81.3%┣██████████████████████▊ ┫ 1.6k/2.0k [00:46<00:11, 35it/s]
8.091991e-04 81.6%┣██████████████████████▉ ┫ 1.6k/2.0k [00:46<00:10, 36it/s]
7.960719e-04 82.1%┣███████████████████████ ┫ 1.6k/2.0k [00:46<00:10, 36it/s]
7.754686e-04 82.5%┣███████████████████████ ┫ 1.7k/2.0k [00:46<00:10, 36it/s]
7.622053e-04 83.0%┣███████████████████████▎ ┫ 1.7k/2.0k [00:46<00:09, 36it/s]
7.512193e-04 83.3%┣███████████████████████▎ ┫ 1.7k/2.0k [00:46<00:09, 36it/s]
7.307203e-04 83.8%┣███████████████████████▌ ┫ 1.7k/2.0k [00:46<00:09, 36it/s]
7.203863e-04 84.2%┣███████████████████████▋ ┫ 1.7k/2.0k [00:46<00:09, 36it/s]
7.063794e-04 84.7%┣███████████████████████▊ ┫ 1.7k/2.0k [00:46<00:08, 37it/s]
6.931902e-04 85.0%┣███████████████████████▉ ┫ 1.7k/2.0k [00:46<00:08, 37it/s]
6.832654e-04 85.5%┣████████████████████████ ┫ 1.7k/2.0k [00:46<00:08, 37it/s]
6.775846e-04 85.9%┣████████████████████████ ┫ 1.7k/2.0k [00:46<00:08, 37it/s]
6.714514e-04 86.4%┣████████████████████████▏ ┫ 1.7k/2.0k [00:47<00:07, 37it/s]
6.670260e-04 86.7%┣████████████████████████▎ ┫ 1.7k/2.0k [00:47<00:07, 37it/s]
6.544517e-04 87.1%┣████████████████████████▍ ┫ 1.7k/2.0k [00:47<00:07, 37it/s]
6.490860e-04 87.5%┣████████████████████████▌ ┫ 1.8k/2.0k [00:47<00:07, 37it/s]
6.426445e-04 87.9%┣████████████████████████▋ ┫ 1.8k/2.0k [00:47<00:06, 38it/s]
6.362482e-04 88.4%┣████████████████████████▊ ┫ 1.8k/2.0k [00:47<00:06, 38it/s]
6.339272e-04 88.6%┣████████████████████████▉ ┫ 1.8k/2.0k [00:47<00:06, 38it/s]
6.082896e-04 89.1%┣█████████████████████████ ┫ 1.8k/2.0k [00:47<00:06, 38it/s]
5.910454e-04 89.5%┣█████████████████████████ ┫ 1.8k/2.0k [00:47<00:06, 38it/s]
5.778728e-04 89.9%┣█████████████████████████▏ ┫ 1.8k/2.0k [00:47<00:05, 38it/s]
5.688689e-04 90.3%┣█████████████████████████▎ ┫ 1.8k/2.0k [00:47<00:05, 38it/s]
5.581091e-04 90.7%┣█████████████████████████▍ ┫ 1.8k/2.0k [00:47<00:05, 38it/s]
5.411605e-04 91.2%┣█████████████████████████▌ ┫ 1.8k/2.0k [00:47<00:05, 39it/s]
5.203213e-04 91.6%┣█████████████████████████▋ ┫ 1.8k/2.0k [00:47<00:04, 39it/s]
5.022494e-04 92.0%┣█████████████████████████▊ ┫ 1.8k/2.0k [00:47<00:04, 39it/s]
4.766589e-04 92.4%┣█████████████████████████▉ ┫ 1.8k/2.0k [00:47<00:04, 39it/s]
4.584549e-04 92.9%┣██████████████████████████ ┫ 1.9k/2.0k [00:47<00:04, 39it/s]
4.482883e-04 93.3%┣██████████████████████████ ┫ 1.9k/2.0k [00:47<00:03, 39it/s]
4.373828e-04 93.6%┣██████████████████████████▏ ┫ 1.9k/2.0k [00:48<00:03, 39it/s]
4.254914e-04 94.0%┣██████████████████████████▎ ┫ 1.9k/2.0k [00:48<00:03, 40it/s]
4.201819e-04 94.4%┣██████████████████████████▍ ┫ 1.9k/2.0k [00:48<00:03, 40it/s]
4.136522e-04 94.8%┣██████████████████████████▌ ┫ 1.9k/2.0k [00:48<00:03, 40it/s]
4.018640e-04 95.3%┣██████████████████████████▊ ┫ 1.9k/2.0k [00:48<00:02, 40it/s]
3.946360e-04 95.6%┣██████████████████████████▊ ┫ 1.9k/2.0k [00:48<00:02, 40it/s]
3.872557e-04 96.1%┣███████████████████████████ ┫ 1.9k/2.0k [00:48<00:02, 40it/s]
3.821473e-04 96.4%┣███████████████████████████ ┫ 1.9k/2.0k [00:48<00:02, 40it/s]
3.699913e-04 96.8%┣███████████████████████████ ┫ 1.9k/2.0k [00:48<00:02, 40it/s]
3.611223e-04 97.2%┣███████████████████████████▏┫ 1.9k/2.0k [00:48<00:01, 40it/s]
3.415626e-04 97.6%┣███████████████████████████▎┫ 2.0k/2.0k [00:48<00:01, 41it/s]
3.274656e-04 98.1%┣███████████████████████████▌┫ 2.0k/2.0k [00:48<00:01, 41it/s]
3.188943e-04 98.5%┣███████████████████████████▋┫ 2.0k/2.0k [00:48<00:01, 41it/s]
3.130764e-04 98.9%┣███████████████████████████▊┫ 2.0k/2.0k [00:48<00:01, 41it/s]
3.040417e-04 99.3%┣███████████████████████████▉┫ 2.0k/2.0k [00:48<00:00, 41it/s]
2.979800e-04 99.7%┣████████████████████████████┫ 2.0k/2.0k [00:48<00:00, 41it/s]
2.913693e-04 100.0%┣███████████████████████████┫ 2.0k/2.0k [00:48<00:00, 41it/s]
Compute the relative L2 error
using Integrals
u_analytical(x,p) = sin.(2 * pi .* x) + 0.1 * sin.(50 * pi .* x)
error(x,p) = abs2.(vec(phi([x;;],res.u)) .- u_analytical(x,p))
relative_L2_error = solve(IntegralProblem(error,0,1),HCubatureJL(),reltol=1e-3,abstol=1e-3) ./ solve(IntegralProblem((x,p) -> abs2.(u_analytical(x,p)),0, 1),HCubatureJL(),reltol=1e-3,abstol=1e-3)
1-element Vector{Float64}:
8.740902437741377e-8